

Basic concepts of statistical analysis

Sasivimol Rattanasiri, Ph.D

Section for Clinical Epidemiology and Biostatistics

Ramathibodi Hospital, Mahidol University

E-mail: sasivimol.rat@mahidol.ac.th

Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospita

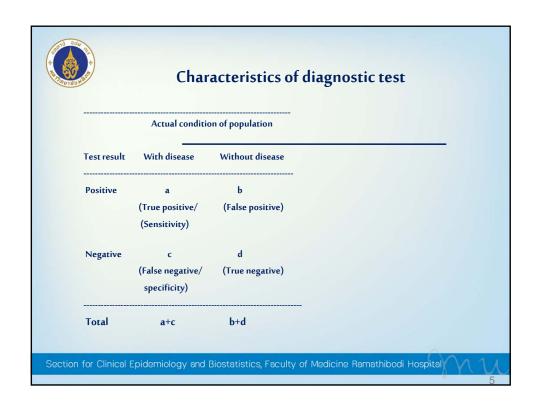
Outline of talk

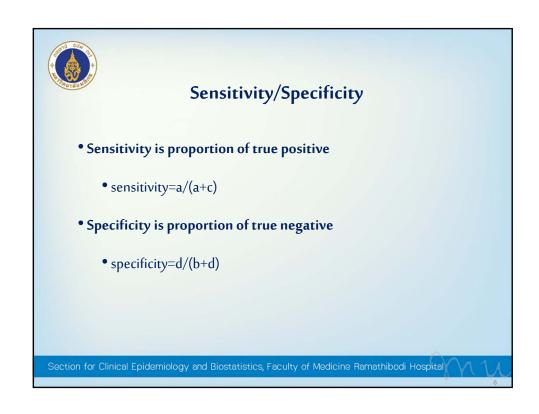
Diagnostic tests:

- > Categorical data
 - Estimate sensitivity, specificity
 - Estimate LR⁺, LR⁻
- Continuous data
 - Estimate area under receiver operating characteristics (ROC) curve

Diagnostic study

- Study design: Cross-sectional or case-control study
- Study population should be identified with some demographics and diagnostic characteristics
- The criterion (gold) standard represents the truth, or as close to the truth as current measurements
- Types of data of diagnostic tests: continuous or categorical data


Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital



Example

Hysteroscopy was used to diagnose uterine cancer in premenopausal women. The gold standard to diagnose uterine cancer was pathology analysis.

- Study design: cross-sectional study
- Study population: premenopausal women
- Gold standard: Pathology
- Diagnostic test: Hysteroscopy

PPV/NPV

- Positive predictive value (PPV) is number of diseased patients with positive tests divided by number of patients with positive tests
 - PPV=a/(a+b)
- Negative predictive value (NPV) is number of non-diseased patients with negative tests divided by number of patients with negative tests
 - NPV=d/(c+d)

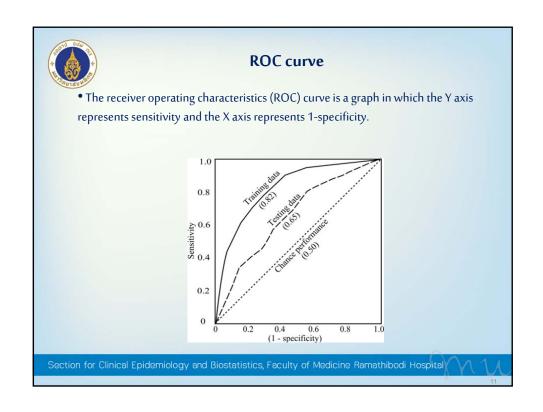
Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital

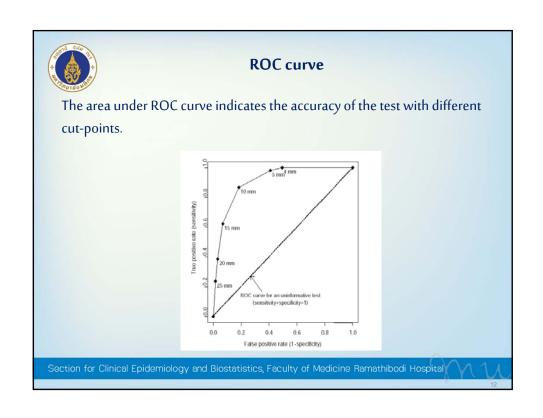
		Patients with <u>bowel cancer</u> (as confirmed on <u>endoscopy</u>)		
		Condition positive	Condition negative	
Fecal occult blood screen test outcome	Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10%
	Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

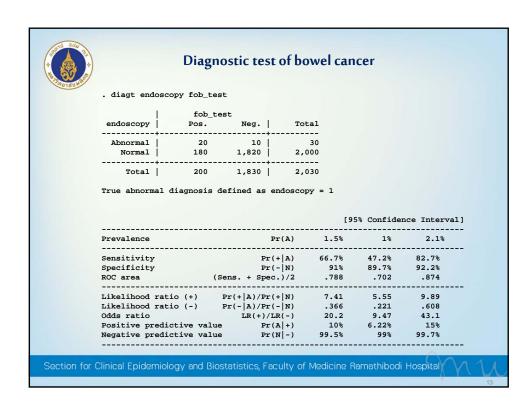
Likelihood ratio positive

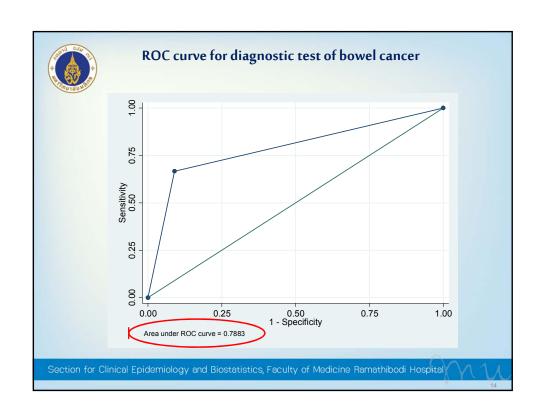
 $LR^+ = \frac{likelihood \text{ of positive result in patients with disease}}{likelihood of positive result in patients without disease}$

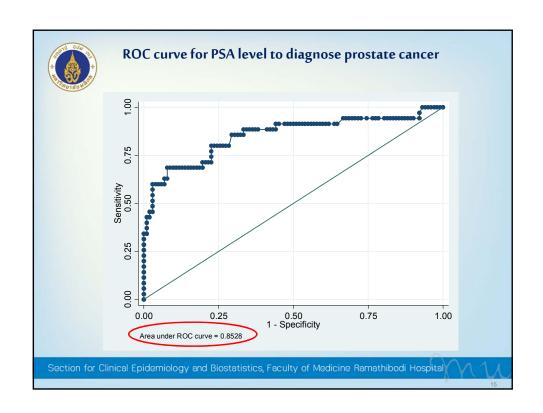
- LR⁺ = sensitivity/(1-specificity)
- LR + = 6.2 means that a positive test results in 6.2 times more likely to occur in patients with disease than in patient without disease.


Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital




Likelihood ratio negative


 $LR^+ = \frac{likelihood \text{ of negative result in patients with disease}}{likelihood \text{ of negative result in patients without disease}}$


- LR⁻ = (1-sensitivity)/specificity
- LR⁻ =0.45 means that a negative result is 55% less likely to occur in a patient with disease than in a patient without disease

Inter-rater agreement

- Agreement between *categorical* assessments is usually considered as comparing the ability of different raters to classify subjects into one of several groups.
- For example, we would like to assess the classification by two radiologists of 85 xeromammograms as
 - Normal
 - Benign
 - Suspicion of cancer
 - Cancer

Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital

Strength of agreement

Value of kappa	Strength of agreement
< 0.20	Poor
0.21-0.40	Fair
0.41-0.60	Moderate
0.61-0.80	Good
0.81-1.00	Very good

Level of agreement

- In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old.
- For example, the PEER values were measured by two different methods; large and mini peak flow meters. If the two PEER meters were differed by more than 10 l/min, we could replace large meter by mini meter because small difference would not affect decisions on patient management.